Skip to main content

Nvidia NIM

https://docs.api.nvidia.com/nim/reference/

tip

We support ALL Nvidia NIM models, just set model=nvidia_nim/<any-model-on-nvidia_nim> as a prefix when sending litellm requests

API Key​

# env variable
os.environ['NVIDIA_API_KEY']

Sample Usage​

from litellm import completion
import os

os.environ['NVIDIA_API_KEY'] = ""
response = completion(
model="nvidia_nim/meta/llama3-70b-instruct",
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
temperature=0.2, # optional
top_p=0.9, # optional
frequency_penalty=0.1, # optional
presence_penalty=0.1, # optional
max_tokens=10, # optional
stop=["\n\n"], # optional
)
print(response)

Sample Usage - Streaming​

from litellm import completion
import os

os.environ['NVIDIA_API_KEY'] = ""
response = completion(
model="nvidia_nim/meta/llama3-70b-instruct",
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
stream=True,
temperature=0.2, # optional
top_p=0.9, # optional
frequency_penalty=0.1, # optional
presence_penalty=0.1, # optional
max_tokens=10, # optional
stop=["\n\n"], # optional
)

for chunk in response:
print(chunk)

Function/Tool Calling​

from litellm import completion

# set env
os.environ['NVIDIA_API_KEY'] = ""

tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
model="nvidia/meta/llama-3.1-70b-instruct",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)

Forcing Tool Use​

If you want LLM to use a specific tool to answer the user’s question

You can do this by specifying the tool in the tool_choice field like so:

response = completion(
os.environ['NVIDIA_API_KEY'] = ""
messages=messages,
tools=tools,
tool_choice={"type": "tool", "name": "get_weather"},
)

Usage - Vision​

from litellm import completion

# set env
os.environ['NVIDIA_API_KEY'] = ""

def encode_image(image_path):
import base64

with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")


image_path = "nvidia-picasso.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
response = litellm.completion(
model="nvidia/microsoft/phi-3-vision-128k-instruct",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
print(f"\nResponse: {response}")

Usage - embedding​

import litellm
import os

response = litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5", # add `nvidia_nim/` prefix to model so litellm knows to route to Nvidia NIM
input=["good morning from litellm"],
encoding_format = "float",
user_id = "user-1234",

# Nvidia NIM Specific Parameters
input_type = "passage", # Optional
truncate = "NONE" # Optional
)
print(response)

Usage - LiteLLM Proxy Server​

Here's how to call an Nvidia NIM Endpoint with the LiteLLM Proxy Server

  1. Modify the config.yaml

    model_list:
    - model_name: my-model
    litellm_params:
    model: nvidia_nim/<your-model-name> # add nvidia_nim/ prefix to route as Nvidia NIM provider
    api_key: api-key # api key to send your model
  1. Start the proxy

    $ litellm --config /path/to/config.yaml
  2. Send Request to LiteLLM Proxy Server

    import openai
    client = openai.OpenAI(
    api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
    base_url="http://0.0.0.0:4000" # litellm-proxy-base url
    )

    response = client.chat.completions.create(
    model="my-model",
    messages = [
    {
    "role": "user",
    "content": "what llm are you"
    }
    ],
    )

    print(response)

Supported Models - πŸ’₯ ALL Nvidia NIM Models Supported!​

We support ALL nvidia_nim models, just set nvidia_nim/ as a prefix when sending completion requests

Model NameFunction Call
nvidia/nemotron-4-340b-rewardcompletion(model="nvidia_nim/nvidia/nemotron-4-340b-reward", messages)
01-ai/yi-largecompletion(model="nvidia_nim/01-ai/yi-large", messages)
aisingapore/sea-lion-7b-instructcompletion(model="nvidia_nim/aisingapore/sea-lion-7b-instruct", messages)
databricks/dbrx-instructcompletion(model="nvidia_nim/databricks/dbrx-instruct", messages)
google/gemma-7bcompletion(model="nvidia_nim/google/gemma-7b", messages)
google/gemma-2bcompletion(model="nvidia_nim/google/gemma-2b", messages)
google/codegemma-1.1-7bcompletion(model="nvidia_nim/google/codegemma-1.1-7b", messages)
google/codegemma-7bcompletion(model="nvidia_nim/google/codegemma-7b", messages)
google/recurrentgemma-2bcompletion(model="nvidia_nim/google/recurrentgemma-2b", messages)
ibm/granite-34b-code-instructcompletion(model="nvidia_nim/ibm/granite-34b-code-instruct", messages)
ibm/granite-8b-code-instructcompletion(model="nvidia_nim/ibm/granite-8b-code-instruct", messages)
mediatek/breeze-7b-instructcompletion(model="nvidia_nim/mediatek/breeze-7b-instruct", messages)
meta/codellama-70bcompletion(model="nvidia_nim/meta/codellama-70b", messages)
meta/llama2-70bcompletion(model="nvidia_nim/meta/llama2-70b", messages)
meta/llama3-8bcompletion(model="nvidia_nim/meta/llama3-8b", messages)
meta/llama3-70bcompletion(model="nvidia_nim/meta/llama3-70b", messages)
microsoft/phi-3-medium-4k-instructcompletion(model="nvidia_nim/microsoft/phi-3-medium-4k-instruct", messages)
microsoft/phi-3-mini-128k-instructcompletion(model="nvidia_nim/microsoft/phi-3-mini-128k-instruct", messages)
microsoft/phi-3-mini-4k-instructcompletion(model="nvidia_nim/microsoft/phi-3-mini-4k-instruct", messages)
microsoft/phi-3-small-128k-instructcompletion(model="nvidia_nim/microsoft/phi-3-small-128k-instruct", messages)
microsoft/phi-3-small-8k-instructcompletion(model="nvidia_nim/microsoft/phi-3-small-8k-instruct", messages)
mistralai/codestral-22b-instruct-v0.1completion(model="nvidia_nim/mistralai/codestral-22b-instruct-v0.1", messages)
mistralai/mistral-7b-instructcompletion(model="nvidia_nim/mistralai/mistral-7b-instruct", messages)
mistralai/mistral-7b-instruct-v0.3completion(model="nvidia_nim/mistralai/mistral-7b-instruct-v0.3", messages)
mistralai/mixtral-8x7b-instructcompletion(model="nvidia_nim/mistralai/mixtral-8x7b-instruct", messages)
mistralai/mixtral-8x22b-instructcompletion(model="nvidia_nim/mistralai/mixtral-8x22b-instruct", messages)
mistralai/mistral-largecompletion(model="nvidia_nim/mistralai/mistral-large", messages)
nvidia/nemotron-4-340b-instructcompletion(model="nvidia_nim/nvidia/nemotron-4-340b-instruct", messages)
seallms/seallm-7b-v2.5completion(model="nvidia_nim/seallms/seallm-7b-v2.5", messages)
snowflake/arcticcompletion(model="nvidia_nim/snowflake/arctic", messages)
upstage/solar-10.7b-instructcompletion(model="nvidia_nim/upstage/solar-10.7b-instruct", messages)